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It is shown that Boltzmann's equation written in terms of microscopic 
density (namely the unaveraged Boltzmann function) has a wider range of 
validity as well as finer resolvability for fluctuations than the conventional 
Boltzmann equation governing Boltzmann's function. In fact the new 
Boltzmann equation for ideal gases has implications as a microscopically 
exact continuity equation like Klimontovich's equation for plasmas, and 
can be derived without invoking any statistical concepts, e.g., distribution 
functions, or molecular chaos. The Bohzmann equation in the older 
formalism is obtained by averaging this equation only under a restricted 
condition of the molecular chaos. The new Boltzmann equation is seen to 
contain information comparable with Liouville's equation, and serves as a 
master kinetic equation. A new hierarchy system is formulated in a certain 
parallelism to the BBGKY hierarchy. They are shown to yield an identical 
one-particle equation. The difference between the two hierarchy systems 
first appears in the two-particle equation. The difference is twofold. First, 
the present formalism includes thermal fluctuations that are missing in the 
BBGKY formalism. Second, the former allows us to formulate multi-time 
correlations as well, whereas the latter is restricted to sirnultaneous correla- 
tion. These two features are favorably utilized in deriving the Landau-  
Lifshitz fluctuation law in a most straightforward manner. Also, equations 
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describing the nonequilibrium interaction between thermal and fluid- 
dynamical fluctuations are derived. 

KEY WORDS: Klimontovich formalism; unaveraged Boltzmann function; 
Boltzmann equation without molecular chaos; generalized BBGKY; 
thermal and turbulent fluctuations interaction; double-series 13-moment 
expansion; Landau-Lifshitz fluctuation laws. 

1. I N T R O D U C T I O N  

1.1. B B G K Y a n d  K l imontov ich  Formal isms 

It is widely known that one of the most systematic methods for describing 
the statistical behavior of gases in the nonequilibrium state is provided by 
the so-called BBGKY hierarchy method. (1) This method has its basis in 
Liouville's equation, which determines evolution of Liouville's density 
function, a complete specification of the state of an N-particle Hamiltonian 
system of a gas in terms of 6N variables in F space. 

Another density function which can be compared with the Liouville 
density function in the level of description has been proposed by Klimontovich 
in connection with plasma kinetic theory. (2) The function, which is called 
the microscopic density, has an explicit expression of the form 

N 

f(z, t) = ~ 3[z - z(~)(t)] (1) 
S = l  

where z = (x, v) denotes a phase-space point, z(~)(t) gives the locus of the 
sth particle in the phase space, 3 is Dirac's delta function, and the summa- 
tion is over all particles N under consideration. The microscopic density has 
a favorable feature in comparison with the Liouville density function: The 
microscopic density is defined in the (six-dimensional) phase space, in 
contrast to 6N space of the Liouville density, and has a definite physical 
meaning such that the expression 

A~AV f~x~v f dxdv 
gives the "exac t "  number density at an instant t in the phase space z. This 
is an immediate consequence of the fact that each integrated delta function 
(1) is unity or zero depending on whether the given particle is located inside 
or outside, respectively, the volume Ax Av. 

The governing equation of the microscopic density f has also been 
derived by Klimontovich<2); this is simply a microscopic equation of con- 
tinuity in the phase space 
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a /  a]  
+ v N + = 0 (2) 

where F is the force exerted on a particle at (x, v) of the phase space and m is 
the mass of the particle. We note here that no statistical processing has been 
involved in deriving Eq. (2): This is an exact kinematical relation to be 
held at any instant, expressing no generation or disappearance of particles 
in the phase space. 

1.2. O b j e c t i v e  and J u s t i f i c a t i o n  

Since the microscopic dens i tyf  contains physical information equivalent 
to the Liouville density function, and Eq. (2) is similarly related to the 
Liouville equation, it should be possible to construct a hierarchy formalism 
on the basis of Eq. (2) and f i n  a certain parallelism to the BBGKY formalism. 
The objective of this paper is to carry out this procedure for classical ideal 
gases with binary molecular encounters, in a form which allows direct 
comparison with the BBGKY counterpart. 

Effort along this line, however, would not be very worthwhile if it 
simply resulted in verifying the correctness of the BBGKY formalism from 
a different approach. Regarding this point, we can show that the formalism 
proposed here reveals further details the BBGKY formalism cannot cover, 
reflecting the fact that the present method has a finer resolvability for 
fluctuations than does the BBGKY formalism. The subtle point out of which 
this difference emerges lies in a simple mathematical identity; 

N N 

N 

= ~ a[z - ~)(t)] a[2 - z~)(t)]  + a(z - 2) 

N 

x ~ 8[z - z(~)(t)] (3) 
S = I  

Let an average, defined properly, be taken over the identity; then along with 
definition(l) the following equation results: 

f ( z ) f (~)  = A,(z ,  ,~) + 8(z - 2)f(z)  (4) 

with f and f n  defined by 

f(z) = f (5) 

N 

fii(z, 2) = ~ 3[z - z(~)(t)] 8[2 - z(~)(t)] (6) 
s=~g 
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If the average is identified with what is employed in the BBGKY formalism, 
namely with multiplying by the Liouville density function f N ( z  m ... .  , z (N~) 

and performing integration with respect to variables zm,..., z (~, the left-hand 
side of (6) gives the two-particle distribution function defined there, and in 
the same way, the func t ionfof  (5) coincides with the one-particle distribution, 
namely the Boltzmann function. As is easily seen [for example, see Eq. (26) 
of Section 3] the second term on the right-hand side of (4) represents a term 
yielding the thermal agitation. Then expression (4) shows a clear-cut 
difference in resolvability, in that the fluctuation correlation in the present 
formalism [the left-hand side of (4)] includes the thermal agitation, which is 
missing in the BBGKY formalism. This fact implies that, in the new for- 
malism, heuristic reinterpretations of the existing kinetic theory, such as in- 
voking the Boltzmann-Lengevin equation (3~ to retrieve thermal agitation, 
are no longer necessary and are replaced with a direct manipulation. (See 
Section 3.) 

1,3. A Key Version 

In dealing with plasmas, namely phenomena associated with Coulomb 
interactions (soft collisions), the Klimontovich equation (2) is successfully 
utilized as the master kinetic equation out of which the equation for each 
level of the hierarchy is derived in a tractable form. This equation, however, 
is not convenient in dealing with an ideal gas, in which molecular encounters 
obey the hard collision condition. In fact, the force ~" exerted on the molecule 
would be of the form of a delta-like function having a small width of collision 
time t*. Therefore our task is to reformulate the microscopic continuity 
equation in a form free from the delta-function-like force without degrading 
the level of description, namely without recourse to any statistical concepts. 

1.4. Brief Account  of the Approach 

Derivation of the master kinetic equation along the line meeting the 
above requirement is attempted in Section 2. It turns out that the prospective 
master equation has the form of the Boltzmann equation. It cannot be 
overemphasized that t h i s  Boltzmann equation differs from the conventional 
Boltzmann equation in that it governs the microscopic density f (not the 
Boltzmann function f )  and that it involves no statistical processing, such as 
molecular chaos. The conventional Boltzmann equation is obtained as its 
moment equation of the lowest order by averaging the equation and by 
postulating (binary) molecular chaos. In Section 3 equations of the higher 
stages of the hierarchy are derived and are compared with their BBGKY 
counterparts. They are shown to be identical in the homogeneous part of the 
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equations but to differ in that the present hierarchy equations comprise 
inhomogeneous terms which are attributed to the presence of thermal 
agitations. In order to check if the thermodynamic fluctuation is included 
correctly in the present formalism, an attempt is made to derive the Landau- 
Lifshitz formula for spontaneous stress and heat flow (Section 4). In Section 5 
moment equations describing the evolution, in physical space, of turbulent 
fluctuations in the course of nonequilibrium interaction with thermal agita- 
tions are derived. 

2. " M A S T E R "  B O L T Z M A N N  E Q U A T I O N  

2.1. Limiting Form of t h e K l i m o n t o v i c h  Cont inu i ty  Equation 

A guideline in reformulating the Klimontovich continuity equation to 
apply to a gas with hard molecules is the following: As we have seen pre- 
viously, on the one hand, the vanishing collision time (t* = 0) characteriz- 
ing the hard collision makes it difficult to employ Eq. (2). On the other hand, 
however, it enables us to single out effects due to collision as instantaneous, 
far-reaching effects in velocity space, thereby making it possible to formulate 
molecular interaction in an integral form instead of a divergence form. 

Figure 1 illustrates the loci of particles in a binary encounter for (a) 
hard and (b) soft collisions, respectively. A salient feature of the collision of 
type (a) is that a particle (say P) that lies on a three-dimensional hyperplane 
(x = const, v; arbitrary) at time t can reach a specified volume Az located at 
(x, v) instantly upon collision provided that velocity -~' of the collision partner 
t3 satisfies the conditions 

~' + v' = ~ +  v, ~,2 +v ,2  =~2  + v 2 (7) 

where v' is the velocity of the particle P before collision and where the 
velocity v of the particle P after collision has been prescribed. Then the 
change in the number of particles in the volume Az during the time interval 
At, namely 

(8/8t) ~ f clz At (8) 
d A Z  

depends on two fluxes, the convective flux Q across the surfaces x = const 
and x + Ax = const, and the collisional flux P reaching instantly from any 
part of the hyperplane in a manner analogous to the radiative flux in physical 
space. 

The peculiarity of the present problem, namely the vanishing collision 
time, lies in the fact that convective flux is allowed only across the surfaces 
x = const and x + Ax = const of the six-dimensional volume Az, whereas 
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Fig. 1. Schematic representation of six-dimensional (x, v) space and of molecular 
encounters for (a) hard and (b) soft collisions. 

the " rad ia t ive"  flux is permeable only across the surfaces v = const and 
v + Av ---- const;  the two fluxes are apparently discernible because they are 
perpendicular to each other. N o  such distinction is possible in the case o f  a 
soft collision, e.g., Coulomb interaction (Fig. lb). The first contr ibution 
amounts  to 

-(8/8x) �9 s  vf dz 2xt (9) 

and the second one is expressed by a difference o f  integrals spanning the 
whole hyperplane, counting the nfimber of  particles going into and out o f  the 
specified volume. 
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In the above expression f2' and ~) are integral regions of the collision partners 
(z', 2') and (z, 2), respectively, which are located between the hyperplanes 
x = const and x + Ax = const and subject to additional conditions (7) and 
the condition that the collision partners are to collide within time interval 
At. In expression (10), we transform variables as 

dz' dY = dx'  d~' dr '  dV = dxff dr'  dv d~ (11) 

which is easily confirmed in view of the relations 

~(x' ,  ~')/~(xd, r') = I, ~(~', v') /~(~,  v) = 1 

where x~' [=�89 + ~')] and r' ( = x ' - : V )  denote vectors specifying the 
center of gravity and the relative location of the two particles, respectively. 
In the similar way we have 

dz d2 = dxo dr dv dr 

where the quantities xa and r are defined similarly with respect to the un- 
primed collision partners (z, 2). For sufficiently small &t, we can put xff = 
xG = x. The integral region of r', which forms a subspace of f2', constitutes 
a cylindrical shell with height [V - v'] At and with radius b (the impact 
parameter), standing on a target plane with target particle z' at the center 

dr' = 2~r[V - v' l A t  b db = dr 

where invariance of the magnitude of relative velocities 

V =  I V -  v' t = ] ~ -  v] (12) 

an immediate consequence of Eqs. (7), has been utilized. Then the integral 
(10) is rewritten in the form 

with 

d K  = 2rr Vb db 

It should be stressed here that integral expression (10) counts the exact 
number of pertinent collisions; in other words, no statistical processing, 
namely no concept of expectation values, nor any hypothesis of molecular 
chaos, is involved. In fact, the above manipulation was based only on two 
factors: the exact number density f and deterministic Newtonian mechanics. 

The equation of continuity, which expresses no generation or disappear- 
ance of particles in the phase space, requires that the total change in the 
number of molecules in the volume Az during time interval At be attributable 
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entirely to two origins: gain/loss due to convection (19) and collision (13). 
We have, then, 

- f(2)f(z)] dK dee (14) 

Thus we have obtained an ideal gas version of the plasma kinetic equation (2). 
If, in the above equation, we introduce a formal procedure of dividing Eq. 
(14) by Az and taking a limit of ~z ---> 0, then we have 

Bf  - -~ + v .~x  f -  J(21z)[f(of(Ol = o (15) 

with 

{. 
J(21z)[g(z, 2)] = J [g(z', 2') - g(z, 2)1 dK dee (16) 

This is simply Boltzmann's equation, written in terms of the microscopic 
density in place of the Boltzmann function. 

In what follows this equation will play the role of a master equation 
from which a series of hierarchy equations is generated, just in a similar 
manner that the BBGKY hierarchy is derived from the Liouville equation. 
For this reason Eq. (15) is referred to as the master Boltzmann equation 
(MBE) in the following. 

The above formulation is exact only for gases with elastic spherical 
molecules. Classification into two orthogonal fluxes, one written in a diver- 
gence form and the other in an integral form of (15), is obscured if the above 
reasoning is to be extended to include the power force law 

LFI ~ 

of the molecular interaction. In fact, then, both loci P and Q of Fig. l a 
have finite curvature on entering the volume Az and are not perpendicular to 
each other. If, however, we can choose the size Ax~ of the volume such that 
it is larger than the radius of curvature in almost all collisions, but is smaller 
than a characteristic length of long-range effects, then the above method is 
seen still to be valid. Thus the incorporation of the softer collision into the 
framework of the present formalism is made possible at the risk of degrading 
the temporal resolution of the MBE: It is not capable of resolving events with 
time constant smaller than t* = r*/(RT)  1~2, where r* denotes the charac- 
teristic radius of curvature of a particle upon collision. This does not affect, 
however, the resolution capability of the present formalism with regard to 
the thermal agitation. 
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The extended validity of the MBE for softer molecular encounter is 
only conditional: Limitation arises from the fact that the collision integral 
does not converge (~ for 

s < 3 (17) 

This implies that, under this condition, we cannot find the proper volume 
size Ax~ meeting the requirement stated above, thereby making the two 
fluxes discernible. Thus the condition s >< 3 provides a criterion as to which 
of the master kinetic equations (2) or (15) is to be employed in the problem. 

2.2. T w o  Methods of Solving the MBE 

Because of the "rugged"  or discrete structure of the function f, mathema- 
tical tools for solving the MBE (15) are limited to either of the following 
schemes: The first is a direct method in which the distribution of the particles 
is simulated by the Monte Carlo method, and evolution at subsequent times 
is determined according to Eq. (15) for a given initial condition specified 
properly. A most successful application of this method is seen in the study 
of rarefied gas dynamics. For example, in the shock structure problem the 
direct Monte Carlo method yields a solution which agrees with experiments 
better than those obtained by analytical methods. This is because a well- 
designed Monte Carlo method utilizes no averaging procedure, nor any 
concept of a distribution function, (5~ and thereby simulates direct solution 
of the MBE (15), whereas the analytical methods ~6'~ solve the conventional 
Boltzmann equation [Eq. (21) below] with the nonequilibrium correction 
(~b term) deleted. 

The second method of solving the MBE is to replace the function f with 
a continuous function by means of a certain smoothing procedure, e.g., 
averaging. Standard analytical methods are made available only via this 
procedure, and the following part of the paper is devoted to the analytical 
approach by means &averages taken at various statistical levels of description. 

2.3. One-Part ic le  Equation. Comparison wi th  Tradit ional 
Boltzmann Equation 

In order to compare Eq. (15) with the Boltzmann equation in the older 
formalism, we take the average of Eq. (15), and utilize expressions (4) and 
(5); then we have 

-~ + v.  f ( z )  = J(21z)[f~(z,  2)] (18) 

In deriving the equation, use is made of the fact that the term ~(z - 2)f, 
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representing thermodynamic fluctuation, and supposed to appear in the 
collision integral, is seen to have no contribution: Actually we have, for an 
arbitrary moment function fi(v), 

f [3(v)J(~.[z)[3(z  - 2 ) f ]  dv  

= ~(x - ~) j [fi(v') - fi(v)] 3(v - 0)f(v) dK dv d0 = 0 

because the factor (fi '  - fi) 3(v - 0) vanishes in view of the relationships <4~ 

v' = v + Q t ( r  V = v - r  ( 1 9 )  

where 0t is a constant vector defined by the first of Eqs. (19) and V has been 
defined by (12). Then we readily see that Eq. (18) is identical with the one- 
particle equation in the BBGKY formalism a'4'~ provided that the average 
taken in (18) to h a v e f a n d f ~  is the same as described in Section 1.3. 

Description in terms of the smoothed distribution functions, namely of 
the Boltzmann function f ,  the two-point function f~ ,  etc., is unavoidably 
connected with a difficulty of indeterminacy3: Equation (18) for the one- 
particle equation is linked with effects due to two-particle interaction, and 
the same is true for the two-particle equation, where three-particle interaction 
intervenes (see Table I, below). To solve the equation, the chain should be 
terminated at a certain stage by introducing a closure condition. The quality 
of the theory depends on two factors, the quality of the closure condition 
adopted and the stage in the hierarchy at which the truncation is effected. 
A most primitive form of the closure condition was proposed by Boltzmann 
in 1872, and has been known as the hypothesis of (binary) molecular chaos: 

f i~(z ,  2) - f ( z ) f ( 2 )  = 0 (20) 

With this closure condition, Eq. (18) is written as 

+ v . - ~ x  f = J ( 2 1 z ) [ f ( z ) f ( ~ ) ]  (21) 

which is nothing but the Boltzmann equation in its conventional form. It 
would be self-explanatory, from the above procedure leading to Eq. (21), 
that the equation is valid only under far more restrictive conditions than 
Eq. (15). 

2.4. B r e a k d o w n  of  M o l e c u l a r  Chaos 

The binary molecular chaos hypothesis (20) has reigned in kinetic theory 
over a century, and has served as a key hypothesis on which the classical 

a Indeterminacy of this kind is inherent in phenomena that are stochastic and nonlinear. 
For example, we encounter a similar situation in solving the Navier-Stokes equation 
for turbulent flows. 
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Boltzmann equation (21) rests. In Ref. 9, however, the region of validity of 
the molecular chaos hypothesis has been examined critically, leading to the 
following findings: Let us define by 4 

~b(z, 2) = f~I(z, e) - (1 - N -  1) f (z) f (2)  (22) 

a measure for the deviation from molecular chaos. It is shown that leading 
terms of ~b decay according to a diffusion equation for a gas in equilibrium. 
In a nonequilibrium (shear flow) situation, the function ~b is shown to die 
off eventually insofar as the basic flow is stable with respect to a criterion 
according to hydrodynamic stability theory. For these cases, therefore, there 
will be not much danger in putting ~b = 0 from the beginning. However, if 
the basic flow is predicted to be unstable according to the stability criterion, 
~b is shown to grow drastically. Thus we see that the molecular chaos hy- 
pothesis is misleading in unstable flow situations. The crucial point is that the 
deviation from molecular chaos now at issue is not the one arising from the 
dense-gas effect, which is of O(n-1)  (n is the mean number density), or from 
a spontaneous correlation which survives only a few collisions, but is a 
result of macroscopic correlation of O(1), which persists over a hydrodynamic 
length, namely over thousands of mean free paths. The direct connection of 
nonvanishing ~b with the unstable flow conditions has caused the macroscopic 
(turbulent) correlation to be incorporated into the framework of the kinetic 
theory. On the other hand, it has turned out that the traditional Boltzmann 
equation (21) is invalidated for these cases and is to be replaced with the 
one-particle equation (18). Closure at the one-particle stage turns out to be 
incorrect and under these circumstances we should address ourselves to the 
multiparticle equations. 

3. A N E W  H I E R A R C H Y  S Y S T E M  

3.1. T w o - P o i n t  T w o - T i m e  Corre la t ion  

The Liouville equation, i.e., the master equation of the BBGKY 
formalism, describes the evolution of the Liouville density function fu in the 
space of (zl , . . . ,  ZN, t)  following the standard way of description of multi- 
particle Hamiltonian mechanics. In statistical mechanics it is often more 
convenient to discuss correlation in a multiparticle, multitime space, i.e., in 
the space of [~(al) ..... ~(au)], where ~(a) denotes a seven-dimensional space 
[z(a), t(a)]. A formalism along this line is made possible by adapting the 

4 The factor N-1 is unimportant in discussing fluid dynamical behavior of ~b, but is 
inserted in order to fulfill exactly the condition S ~b(z, ~)dz = 0. (See Section 3.1.) 
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MBE in the following manner" Let us denote by f(a) microscopic density in 
~(a) space and define the Boltzmann operator B(a) by 

B(a)f(a)= [ ~ t ~  ) 

Let us form 

where 

Q 

+ v(a)'8-~)]f(a) - J(dla)[f(a)f(d)] 

Af(b) B ( a ) f ( a )  = 0 

Af(b) = f(b) - f(b) 

(23) 

(24) 

N 

g(a; b) = ~ 8[z(a) - z(~)(t(a))] 8[z(b) - z(S)(t(b))] (28) 
s = i  

Note that two arguments separated by semicolon (;) mean two points with 
correlation taken at different times. The physical meaning of f~(a;  b) is 
straightforward; it denotes the two-point probability density of different 
particles at different times. On the other hand, the self-correlation g(a; b) 
expresses the probability of finding the same particle at the point z = z(a) 
and at the time t = t(a) as was located initially, i.e., at t = t(b), at the point 
z = z(b). As is easily confirmed, the functionsf~z(a; b) and g(a; b) reduce, in 
the limit t(a) --+ t(b), respectively, to 

fii(a; b) = fiz(a, b) (29) 

g(a; b) = 8[z(a) - z(b)]f(a) (30) 

wheref~(a, b) is the two-point, one-time distribution function defined by (6). 

and 

denotes an instantaneous fluctuation in the number density in ~(b) space, i.e. 
at a phase space point z(b) and at time t(b). Then, after taking the average, 
we have an equation of the form 

- 

= J(Ctla)[f(a)f(d)f(b) - f(a)f(~)f(b)] (25) 

In view of definition (1) for the microscopic density the quantity f(a)f(b) is 
decomposed as 

f(a)f(b) = f~z(a; b) + g(a; b) (26) 

where f~  and g are the two-point, two-time distribution function and self- 
correlation function defined, respectively, by 

fii(a; b) = ~ 8[z(a) - z%)(t(a))] 8[z(b) - z%)(t(b))] (27) 
8a :~ Sb 
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Extending expression (3) to a triple product and taking the average, we 
are led to the following expression for a three-point, two-time distribution 
function: 

f ( a ) f ( f i ) f ( b )  = fro(a, fi; b) + 8[z(a) - z(d)]f~(a; b) 

+ g~(a, fi; b) + g~(fi, a; b) 

+ 3[z(a) - z(d)]g(a; b) (31) 

with 

t (a) = t (fi) 

where the following functions have been introduced: 

Aii(a,  D; b) 

= ~ 8[z(a) - z(~o!(t(a))] 8[z(fi) - z(S~)(t(a))l 
Sa # Sfi, # sb # Sa 

x 8[z(b) - z%)(t(b))] (32) 

gii(a, 6; b) 

= 

8a ~ Sb 

x 8[z(a) - z%)(t(a))] 8[z(b) - z%)(t(b))] (33) 

We note here that the function g~ has a mixed character of ordinary correla- 
tion (between different particles) and of self-correlation, the latter being 
characterized by two arguments separated by a semicolon. Therefore g~z 
concerns two particles although it is specified by three arguments. Similarly 
to what led to (30), definition (33) reduces, for t(a) -+ t(b), to 

gii(a, d; b) --> 8[z(0) - z(b)]f l i(a,  6) (34) 

As will turn out later, decomposition formulas (26) and (31) separate 
out the thermodynamic part designated by the g's from the total fluctuation. 
The remaining part, i.e., hydrodynamic fluctuation correlations, are given in 
terms of multipoint correlations: 

~ii(a; b) = f~i(a; b) - (1 - N -  ~) f (a) f (b)  (35) 

@iii(a; b; c) = f i i i (a ;  b; c) - -  (1 - -  N-z)(1 - 2 N - ~ ) f ( a ) f ( b )  

x f ( c )  - (1 - 2 N - ~ ) f ( a ) ~ ( b ;  c) - (1 - 2 N - 1 ) f ( b )  

x ~i(c;  a) - (1 - 2N-Z)f (c) tb~(a;  b) (36) 

These relations are so designed that integrating condition (36) with respect 
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to z(c) yields condition (35). This requirement is necessary in order for the 
error caused by truncation (e.g., 4'm = 0) employed at a certain stage not to 
affect the exactness of the equations prior to that stage. (1~ The factors 
1 - N -x, 1 - 2N -x, etc. are inserted for the conditions 

f 4JiH(a; b; c) dz(c) = O, f ~bi~(a; b) dz(b) = 0 (37) 

to be fulfilled. (Note that J~x and f obey the respective conditions If~x(a; b) 
dz(b) = ( U -  1)f(a) and J'f(a) dz(a)= N.) Condition (35) reduces, for 
t(a) = t(b), to (22), as it should. 

In order to close the system at two-particle level, let us introduce an 
assumption of " te rnary"  molecular chaos, 

~bm(a; b; c) = 0 (38) 

which makes it possible to express the three-particle distribution function via 
effects due to binary correlation [See Eq. (36).] Then Eq. (25), when condi- 
tions (26) and (35) on its left-hand side, and (31), (36), and (38) on its right- 
hand side, are utilized, yields the following equation: 

~ - ~  + v(a). [~b(a; b) + g(a; b)] 

= J(dla)[f(a)~b(fi; b) + f(d)~b(a; b) + gH(a, d; b) 

+ g~(d, a; b)] + O(N-  1) (39) 

Terms of O(N-1) are unimportant in what follows; only the limiting case 
N--+ oe with N / V  (V is the total volume under consideration) remaining 
finite need be considered. 

3.2. Sel f -Correlat ion in Equilibrium Gases 

For a gas in equilibrium the leading terms of the hydrodynamic correla- 
tion obey a diffusion equation, and so can be shown to die off eventually. (9~ 
Therefore we may put from the beginning 

4~ = 0 (40) 

in Eq. (39). This condition, then, allows us to put 

g~z(a, fi; b) = f(a)g(d; b) (41) 

which follows directly from the initial condition (34) that g~ should obey, 
along with (30) and the general rule that two particles in an equilibrium gas 
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are uncorrelated if they are so initially. Thus Eq. (39) is written for an 
equilibrium gas in the form 

[(~./Sr) + v(a).~/~x(a)]g(a; b) 

= J(dla)[f(a)g(d;  b) + f (d )g(a;  b)] (42) 

where r is defined by 
-r = t(a) - t(b) (43) 

which we shall assume as positive in what follows. Equation (42) is in 
agreement with the one derived on a different basis by Fox and Uhlenbeck, (1~ 
Hinton, (z2~ and Chappell. (13~ However, it differs from the one due to 
Montgomery (14~ in that the integrand function of the collision integral is 
symmetric with respect to a and d. This symmetry is a consequence of the 
ternary molecular chaos (38) we have employed, which requires implicitly 
that the particle should experience many collisions in the course of random 
flight from z(b) to z(a), i.e., during the elapse of time r. If, instead, we seek 
self-correlation of a particle for a very short time during which few collisions 
are effected, we may put, in the collision term of (25), 

f ( a ) f ( d ) f ( b )  ~ f (a ) f (b )  f(f i)  

In fact, for such a small ~-, correlation between a and b of an identical particle 
will not be so destroyed as to be comparable with that for a foreign particle 
d. With this decomposition rule [together with (25) and (26)] a self-correlation 
equation (1~ of the form (42), with the first term on the right-hand side 
lacking, follows. Thus we see that Eq. (42) and that derived in Ref. 16 are 
for large and for small r, respectively. 

3.3. T w o - P o i n t  S i m u l t a n e o u s  C o r r e l a t i o n  

Now we turn to constructing an equation that is symmetric with respect 
to the two space-time points ~(a) and ~(b). The symmetry with respect to 
z(a) and z(b) in the distribution function is favorable in comparing the 
present theory with the BBGKY theory, in which such symmetry is warranted 
a priori. Such an equation can be obtained simply by adding to Eq. (39) a 
transposed equation in which the roles of the variables (a) and z(b) are 
interchanged. If, in the equation, time variables are transformed according to 

t = � 8 9  + t ( b ) ] ,  . = t ( a )  - t ( b )  

we have the following equation: 

+ v ( a ) . ~  + v ( b ) [ 4 4  ; b) + g(a; b)] 

= S[dla][f(a)~(a; b) + gzi(a, 6; b)]  

+ ~r b) + g~z(a; b, 6)] (44) 
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with the operator J defined by 

J[~]a]h(a,  4; b) = J(d]a)[h(a, (t; b) + h(d, a; b)] (45) 

Special interest lies in the case of simultaneous correlation, T = 0. Then 
the equation in which g and gi~ have been eliminated by means of (30) and 
(34) reads 

[~t + v ( a ) .~x~  + v(b).~@(b~Jr b) 

- J[c la][ f (a)r  b)] - J[c[b][ f (b)r  a)] 

= J[c[a] {3[z(a) - z(b)]A~(a, c)} + J[elb] 

• (~[z(a) - z(b)]f~(b, c)) 

- 3[z(a) - z(b)] J[c[a][f~(a, e)] (46) 

3.4. Comparison wi th  BBGKY Hierarchy 

In Eq. (46) terms on the left-hand side are connected with macroscale 
correlation, whereas those on the right-hand side (inhomogeneous terms) 
have a common factor of a delta function, so are seen to represent effects 
due to thermodynamic fluctuations, which are missing in the BBGKY 
formalism. If terms on the right-hand side are put to zero, Eq. (46) is in 
exact agreement with the two-point BBGKY equation ~8,9~ (with ternary 
molecular chaos). 

Comparison of the BBGKY with the present hierarchy system is sum- 
marized in Table I. The one-particle equations in both formalisms turn out 
to be identical if by the bar average we mean 

g ~  . . .  

as has been identified in Section 1, where fN t is a certain function symmetric 
with respect to its N arguments [z<~,..., z<N>], but not necessarily obeying the 
Liouville equation. The two-particle equation in the BBGKY formalism 
with no closure condition is written in the form 

cr162 ~bm] = + v(a).__x(a) + v(b). r b) 

- J [c ta][ f (a ) r  b)] - J[c[b][ f (b)r  a)] 

- {J[c]a] + J[ctb]}[r b, c)] = 0 (47) 
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Table I. Comparison of the Present Hierarchy Equations with the BBGKY 
Counterparts 

BBGKY hierarchy Present hierarchy 

One-particle ~ "'" .[ LfN = 0 ~ 
equation N--J .  

Two-particle ~ ... ~ Lf~. = 0 ~ 
equation 

Three-particle ~ ... ~ LfN = 0 
equation N - 3  

Master LfN = 0 (Liouville) 
equation 

........% 

B f = 0  ~ 

s  Bf(b)  + zXf(b) Bf(a)  = 0 c 

E Af(a)  Af(b)  Bf(c) = 0 (a, b, c ; cycl. permut.) 

Bj ~ = 0 a (master Boltzmann) 

a Eq. (18). 
Eq. (47). 

c Eq. (48). 
a Eq. (15). 

The corresponding equation in the present formalism reads 

~'~[~, ~ m ]  = J [ c l a ] { 8 [ z ( a )  - z (b)] f i i (a ,  c)} 

+ J [ c l b ] { 8 [ z ( a  ) - z (b ) ] f~ (b ,  c)} - 8[z(a) - z(b)] 

• J[cla]fz~(a, c) (48) 

If " t e rna ry"  molecular chaos (~bm = 0) is imposed on the equation, it 
reduces to Eq. (46), as it should. 

Constructing three- and higher-particle equations in a form that allows 
direct comparison with each other is rather straightforward: As to the three- 
particle case, the equation in the present formalism is given by 

Af(a) A f ( b )  B f ( c )  = 0 (48') 
c t , b , c ;  

e y c l i o  p e r m u t a t i o n s /  

where the summation is over cyclic permutations of the three space-time 
points (a, b, c), and where the operator B has been defined by (15). As in the 
two-particle case, this equation contains more information than the cor- 
responding BBGKY equation 

_- 0 

N - - S  

where L is the Liouville operator, in the sense that Eq. (48') gives three-time 
correlation in general, and that it includes thermal agitations as forcing 
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terms. It should be noted at this point that ranges of applicability of the 
two hierarchy systems are not identical: As was discussed in Section 2.1, 
the present formalism applies only to hard molecules, whereas the BBGKY 
formalism has no such limitation in principle. The same procedure of 
generating a hierarchy system on the basis of  Klimontovich equation 
(2), i.e., 

X f ( a )  = 0 

Af(a) Kf(b)  + Af(b) K f ( a )  = 0 

5 f ( a ) / ~ f ( b )  K f ( a )  = 0 
a ,b ,c :  "l 

cyc l ic  p e r m u t a t i o n s /  

supplements to cover the whole range of intermolecular force laws, and to 
form a complete set. 

4. DERIVATION OF L A N D A U - L I F S H I T Z  F O R M U L A S  

4.1.  M o m e n t  E x p a n s i o n  o f  F u n c t i o n  g 

We present here an illustration that the present formalism gives a 
correct account of phenomena ascribed to thermal agitation of the gas. We 
will show that under equilibrium condition (ui = 0, V = 0) Eq. (42) for 
self-correlation g yields a system of moment  equations out of which the 
well-known Landau-Lifshitz fluctuation formulas for spontaneous stress and 
heat flow are derived. (is) For this purpose we expand the function g in a 
double series of  Hermite polynomials as 

/ ' )(g ,K) 

g(a;  b) = ~o(a)w(b) ~ ~j . . . , z  . . . .  (:) (K) c J+z J ! K ! ~f~j...(a)Wzr~...(b) (49) 

where c is the isothermal speed of sound [= (RT)I/2], W is the three-dimen- 
sional Hermite polynomial, (4) and co is a function defined by 

1 [ v(a) 2] 
o (a) - e x p [ -  

2c2 ] (50) 

Note that the Hermite polynomials have the property of  orthonormality with 
the weight function w, so that the expansion coefficients Q are given as 

Q~s:K?z . . . .  (x(a) - x(b), ~') 

cJ  + K (J) (K) = Ydi j . . . (a) .~  z . . . .  (b)g(a,  b) dv(a) dv(b) (51) 

Each Q of (51) is shown to be of O(n), which is seen from the initial con- 
dition 

[g(a, b)],=o = 3[z(a) - z(b)] f (a)  (52) 
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When this initial value of g is substituted in Eq. (51) we have the general 
expression for initial values of the expansion coefficients Q: 

( J , K )  Ou..,,z .... (x(a) - x(b), r) = nc :+x 8[x(a) - x(b)] 8:z ~ 8, 8Sin"" (53) 

where the summation is over N ! permutations in the subscripts of Kronecker 
deltas. In particular, we have 

[ Q ( O , % = o  = n a N ( a )  - x(b)]  

[n -2n<l'l~l~e,,, J~=o = n - l c  = 8,, 8[x(a)  - x(b)]  (54) 

which give the thermodynamic parts of the density and the velocity correla- 
tion of fluctuation, respectively. Furthermore, if we take in Eq. (51) the 
moment function 

(m/3)2c~[2/t~ + 3][;/Y<=>(b) + 3] (55) 

in place of d +KH~J~(a)jy~K~(b), we have the pressure fluctuation formula 

Ap(a) Ap(b) = (m/3)2{9c~[Q~~176 + [Q~2,2~]0 } 

= p2n-Z(5/3) 8Ix(a) - x(b)] (56) 

It is easily examined that fluctuation formulas (54) and (56) are in agreement 
with those found in textbooks of physics. In a similar fashion we can calculate 
the fluctuation of viscous stress and heat flow: These two quantities are 
defined, in the language of the kinetic theory, by 

~Su.~ (a)][~m (b) t l i j , l m  = 
! 

- �89 dr(a) dr(b) 

f (�89 dr(a) dr(b) q(3,a~ 

where ~/y(2~ and s/~a~ are Hermite polynomials contracted with respect to 
two indices appearing in their subscripts. 

In view of (51), these relations read, respectively, 

q(2,m ~ 2  f (3(2,2) ~ (1(2,2) ,s /'3(2,2) iS,,m = '"  t~r -- �89 Uk~,,m __ l~,meU, + ~ 8U 8,mQ <2'2)] 

q(a,a) l~2,q(a,3) 
f , l  = ~ t m  ~ J i , l  

Their initial values are obtained from (53) as 

p2 
tvu,z,~a,:or"<2'ml _-- 7 8[x(a) -- x(b)] (3,l 8;~ + 8s z 8~ - 2 8~j 8,m ) (57) 

[~m,an 5 p2 
v~,, ~=0 = 2 g  RTS[x (a )  -- x(b)] 8i, (58) 
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4.2. M o m e n t  Equations 

Substituting (49) into Eq. (42), multiplying the equation by moment 
function 2: (:~ (:~ c ~4~ .... (b), and performing integrals with respect to v(a) 
and v(b), we obtain a series of moment equations for Maxwellian molecules 
in a manner similar to the 13-moment method(4~: 

(~/~z)Q(~176 = (~/~r)QI.~z'l~ = (~/Or)Q(2 '2)= 0 (59) 

(~i0-rh-(2,2) 6 n R , T m , 2 )  0 (60) ! ]c4~],Im + - . - ~ q i j , l m  = 

((~/6~.r)q~az,3) + A.~(3 ,3 )  , -",'- 'u~,z = 0 ( 6 1 )  

where B is a constant related to the viscosity and the thermal conductivity 
coefficients as follows;(4~ 

I~ = m R T / 6 B  h = 5 m R 2 T / S B  (62) 

Solving Eqs. (60) and (61), eliminating B by the use of (62), and employing 
the initial conditions (57) and (58), respectively, we are led to the following 
formulas: 

q(2,2) ~mm = n-ZP 2 exp ( - rp /~ )3 [x (a )  - x(b)] 

x (3~ 3jm + ~m 3jz -- ~ 3~j 3Zm) (63) 

q(3,a) ~p2c;T e x p ( -  . p c v / h  ) 3[x(a) x(b)] 3. (64) i,t ~ n -  

where c~ = ~R is the specific heat under constant pressure of a monatomic 
gas. If, in Eqs. (63) and (64), the factor e - ~  (a >> 1) is replaced by (2/a) ~(r), 
we have familiar forms for the Landau-Lifshitz formulas as derived first 
on purely macroscopic considerations. <~6) Thus, use of the kinetic theory, 
coupled with the 13-moment method, has enabled us to show the exponential 
decay of temporal correlation in agreement with a general rule of relaxation 
phenomena. 

5. N O N E Q U I L I B R I U M  INTERACTION BETWEEN T H E R M A L  
A N D  M A C R O S C A L E  FLUCTUATIONS 

Derivation of the Landau-Lifshitz formulas, as shown above, on the 
basis of the present formalism has assured the accuracy of our basic equation 
(15), and therefore of the general kinetic fluctuation equation (46) in elucidat- 
ing phenomena associated with thermodynamic fluctuations. We will discuss 
in what follows how the thermal agitation interacts with other fluctuations 
in nonequilibrium situations (~b # 0). In order to see how thermodynamic 
fluctuations interact with the macroscopic ones in physical space, we multiply 
the moment function a(a)~(b) on Eq. (46), the kinetic equation governing 
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the whole fluctuation, and carry out integration with respect to v(a) and v(b); 
then we have the following expression for the moment equations: 

+ ~ a~c(a)&(a)~b + ~ ~pc(b) 

( a ---~-[D 3 ~D a ) 8 e~ 
• ~ - + ~ ~ - c ( a ) & ( a ) a ~ ( a ) ~  

- c(b)G(b)c, 8~(b) ~ ~o - <<<lc,]pf(a)~b(d, b)>>~aG 

- (((Hc~f(b)~(a, b)>>;6>,~ = 8[x(a) - x(b)]G (65) 

with 

G -= �89 + [~(a) + ~(d)]l/3(a)l 

+ [p(a) +/3(O)][~(a)l}f~(a, d)>>Sa 

where the following abbreviations are employed' 

"fZ dr(a), (<Z>>~a = ~'J Z dK(a, fi) dr(a) dv(fi) <z>~ 

[ ~ ( a ) l  = ~ ( a ' )  + ~ ( ~ ' )  - ~ ( a )  - c~(~) 

(66) 

and 

NZ 8Z @k(a)____Z ~uk(b)Z (67) 
2--f = T-f + ex~(a) + ex~(b'----y 

D 8 8 
D--~ 

& = c - l ( v ~  - u~) 

In the above formulas, uk denotes the hydrodynamic velocity. 
We expand the function ~b as 

(68) 

m, mc~'~ 1), m~r2 g,'~(2)~ u , and mcS,~ 3~ 

(oo,oo) D ( J , K )  

d + K j ! K ! ~u...(a)d4~ .... (b) (69) 
(..r,K)= (0,0) 

where co is given by (50) in which v~/c is replaced by G of (68). The expansion 
coefficients R represent correlation functions in physical space, and their 
evolution equations are obtained from Eq. (65) in which the moment 
functions (c~,/3) are chosen as combinations of the following set of poly- 
nomials: 
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where m is the mass of a particle, and ~}3~ is the third-order Hermite 
polynomial with two indices contracted. This exhausts the whole set necessary 
in the 13-moment level of  description. 

Let us consider the simplest case of incompressible flow; then expansion 
(69) starts with (J, K) = (1, 1), and the moment  functions up to d4~ > suffice 
to close the equations. In this case the moment  of  the lowest order is (a, ~ )=  
(m, m ~ l ~ ) ,  and the associated moment  equation gives 

~R~(z~/Oxz(b) = 0 (70) 

where no contribution from the thermal agitation is observed. For moment  
functions of higher order, however, effects due to the thermal motion make 
their appearance, and the two-point Navier-Stokes equation corresponding 
to the choice of  moment  (c~, 13) = (m;/~Z~(a), m~}l~(b)) reads 

D ocl'l> ~ui(a) ~uz(b) ~R<~ "1> ~' '-i ,_____/__z _[_ D(I,I) D(I,I) , 

Dt +ex  + 

+ m 
Oxz(b) 

2 (1,1~ = _ _  S[x(a) - x(b)] (71) + v PP" 
v/'t 

where P,z is the stress deviator tensor and v is the kinematic viscosity. On the 
right-hand side terms including R~z '1> are neglected because they are smaller 
by O(n -1) than those on the left-hand side. I t  is seen in Eq. (71) that the 
inhomogeneous term on the right-hand side arises from the shearing motion 
of a gas. This term vanishes for a gas in equilibrium, as it should. 

In ordinary fluid mechanics the thermal agitation is not the controlling 
mechanism in triggering turbulence; it is too small [O(n -1) N 10 -20] to 
affect macroscopic phenomena under normal conditions. Turbulence 
initiation is affected more by free-stream turbulence of a wind tunnel or 
noise, which enter in the formalism as the initial value of R ~  '1> and not as 
inhomogeneous terms. The thermal agitation contributes to generating 
macroscopic correlations only under hypothetical conditions of  a perfectly 
quiescent windtunnel. 

REFERENCES 

1. D. Montgomery, The Foundations of Classical Kinetic Theory, in Lectures in 
Theoretical Physics, Gordon and Breach Science Publishers, New York (1967), 
Vol. 9C, p. 15. 

2. Yu. L. Klimontovich, The Statistical Theory of Nonequilibrium Processes in a Plasma, 
M.I.T. Press, Cambridge, Massachusetts (1967). 

3. M. Bixon and R. Zwanzig, Phys. Rev. 187:857 (1969). 
4. H. Grad, in Handbueh der Physik, S. Flfigge, ed., Springer, Berlin (1958), Vol. 12, 

p. 205. 



A N e w  Hierarchy System on the Basis of  a '" Mas te r"  Boltzmann Equation 425 

5. G. A. Bird, Phys. Fluids 13:2676 (1970); also in Rarefied Gasdynamies, L. Trilling 
and H. Y. Wachman, eds., Academic, New York (1969), Vol. I, p. 301. 

6, H. M. Mott-Smith, Phys. Rev. 82:885 (1951). 
7. H. Salwen, C. Grosch, and S. Ziering, Phys. Fluids 7:180 (1964). 
8. V. N. Zhigulev, Dokl. Akad. Nauk SSSR 165:502 (1965) [Soviet Phys.--Doklady 

10:1003 (1966)]. 
9. S. Tsug6, Phys. Fluids 17:22 (1974). 

10. C. C. A. Sastri, Long-Range Correlations in the Kinetic Theory, Air Force Office 
of Scientific Research Report TR-1238 (1973). 

11. R. E. Fox and G. E. Uh!enbeck, Phys. Fluids 13:2881 (1970), 
12. F. L. Hinton, Phys. Fluids 13:857 (1970). 
13. W. R. Chappell, J. Stat. Phys. 2:267 (1970). 
14. D. Montgomery, Phys. Fluids 12:804 (1969). 
15. K. Sagara and S. Tsug6, Phys Lett. 48A:53 (1974). 
16. L. D, Landau and E. M. Lifshitz, Fluid Mechanics, Addison-Wesley (1959), Chapter 

17. 


